A Maximum-Principle-Preserving Third Order Finite Volume SWENO Scheme on Unstructured Triangular Meshes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes

Article history: Received 16 August 2015 Received in revised form 3 December 2015 Accepted 17 December 2015 Available online 21 December 2015

متن کامل

Optimising UCNS3D, a High-Order finite-Volume WENO Scheme Code for arbitrary unstructured Meshes

UCNS3D is a computational-fluid-dynamics (CFD) code for the simulation of viscous flows on arbitrary unstructured meshes. It employs very high-order numerical schemes which inherently are easier to scale than lower-order numerical schemes due to the higher ratio of computation versus communication. In this white paper, we report on optimisations of the UCNS3D code implemented in the course of t...

متن کامل

Multi-dimensional Optimal Order Detection (MOOD) - A very high-order Finite Volume Scheme for conservation laws on unstructured meshes

TheMulti-dimensional Optimal Order Detection (MOOD) method is an original Very High-Order Finite Volume (FV) method for conservation laws on unstructured meshes. The method is based on an a posteriori degree reduction of local polynomial reconstructions on cells where prescribed stability conditions are not fulfilled. Numerical experiments on advection and Euler equations problems are drawn to ...

متن کامل

Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes

Abstract In [22], two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in [23]. The extension...

متن کامل

Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes

We consider a nonlinear finite volume (FV) scheme for stationary diffusion equation. We prove that the scheme is monotone, i.e. it preserves positivity of analytical solutions on arbitrary triangular meshes for strongly anisotropic and heterogeneous full tensor coefficients. The scheme is extended to regular star-shaped polygonal meshes and isotropic heterogeneous coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics and Mechanics

سال: 2018

ISSN: 2070-0733,2075-1354

DOI: 10.4208/aamm.oa-2016-0196